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Abstract

We investigate the presence of significant electricity forward risk premia, using data from
three major continental European energy markets - German, Dutch and French. We introduce the
risk premium in the framework of a standard electricity spot/forward unobserved factor model, and
derive the implied forward price behaviour. We then assess the term-structure and time-evolution
of the risk premia for each of the markets.
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1 Introduction

Early models of electricity market prices that were inspired by the financial literature
generally argued that (discounted) forward prices should equal current spot prices. This
no-arbitrage reasoning was based on a buy-and-hold strategy that works well in typical
financial markets yet breaks down in electricity markets due to the non-storable nature
of the traded commodity. In a sense, electricity forwards are not strictly speaking
derivatives, because their value is not a function of another traded asset. However, they
are basic tradables in the electricity market, and the presence of a properly defined risk
premium in their prices cannot be ruled out.

In this paper, we study the presence of risk premia in three of the most liquid conti-
nental European electricity markets: Germany (EEX), France (Powernext: PWN) and
the Netherlands (APX). Our analysis follows and extends the results of recent work by
several authors. Longstaff and Wang (2004) and Karakatsani and Bunn (2005) both
perform nonparametric analysis of very-short-term forward prices, and spot prices, on
the American PJM, and UK electricity markets, and find evidence of significant risk pre-
mia. Villaplana (2003) calibrates a two-factor mean-reverting model with jumps, using
historical electricity spot prices on the PJM market and then compares the theoretical
price of the forward with that quoted on the market, to obtain the risk premium in
terms of the market price of risk of the underlying risk-factors. The former approach
is unable to provide information on the risk premium over longer time horizons, while
the latter is sensitive to estimation of seasonality patterns in electricity spot price series
(robust estimation of seasonality is typically difficult to perform in electricity markets,
see e.g. Culot et al. (2006) for discussion).

Our method combines the advantages of the two approaches to provide estimates
of risk premia at various time horizons, while being robust to spot price seasonality.
Moreover, we extend the previous work and show an apparent time-evolution of the risk
premia, and a clear reduction in magnitude with progressive maturity of the markets. We
focus on major European markets - German, French and Dutch - and consider separately
peak and off-peak prices, as the properties of risk premia have been shown to differ
empirically for peak and off-peak (see Karakatsani and Bunn (2005)). The theoretical
equilibrium model of Bessembinder and Lemmon (2002) also predicts different behaviour
for peak and off-peak risk premia due to different demand levels in the two periods.
The spot price data used in this paper is taken from EEX, PWN and APX, while
the forward data is taken from Platts, an independent energy market data publishing
company (further details are given below).

The rest of the paper is organized as follows. In Section 2, we perform a nonpara-
metric analysis along the lines of Longstaff and Wang (2004) that shows significant risk
premia in short-term forwards in all three markets. We recast the analysis in a dy-
namic trading framework that allows us to demonstrate the time-evolution of the risk
premium. Section 3 introduces a simple forward market model and links the theoretical
notion of the market price of risk to the results of Section 2. In Sections 4 and 5, we
motivate the use of a three-factor forward market model for real market prices, show
that our main empirical results confirm significant risk premia in forward prices, and
offer a visualization of the risk premium term-structure. Section 6 concludes.
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2 Empirical Motivation

To illustrate, we examine the performance of a hypothetical sliding MWh trading strat-
egy (discussed in Hinz et al. (2005)) on each of the markets, for both peakload and
off-peak hours, and consider short-term forwards (namely, day-ahead over-the-counter
prices, as published by Platts), and spot prices (exchange average clearing price). We
start with an initial capitalK(0), and repeat the following strategy on each day i ∈ [1, D]:

Buy on Forward On day i, invest all current capital K(i− 1), in order to buy power
on the over-the-counter market (paying the over-the-counter price F (i)).

Sell on Spot Also on day i, resell the power on the spot exchange (receiving the ex-
change clearing price S(i)), ending with a new amount of capital K(i).

For instance, if K(0) = 10e, and spot and forward prices are S(1) = 5e/MWh
and F (1) = 4e/MWh respectively, then we will buy ρ := K(0)/F (1) = 2.5MWh on
the forward market, and receive ρS(1) = 12.5e from sale on the spot market. The
accumulated capital at the end of day d ≤ D from pursuing this strategy, assuming now
that K(0) = 1, is given by K(d) = Πd

i=1S(i)/F (i), so that lnK(d) =
∑d
i=1{lnS(i) −

lnF (i)}. A positive (negative) average risk premium over [1, d] corresponds to lnK(d)
greater (less) than zero, i.e. spot price greater (less) than forward price, on average.
The accumulated log capital lnK(d) over time, using actual market data, is plotted in
Figures 1–6, for EEX, APX and PWN peakload and off-peak hours.

The spot price S(i) is the mean (conditional on peak or off-peak hour) exchange
clearing price for physical delivery of power on day i. Spot prices and volumes on
each of the markets are determined in advance by a two-sided blind auction, organized
by the individual exchanges. Until the morning of the day prior to delivery, market
participants may continuously propose price/quantity bid/sell combinations using an
electronic system, for each hour of the delivery day. The bids are entered into a sealed
order book, and upon closure of the bidding phase, are aggregated to give market demand
and supply curves for the following day. The intersection of each of these curves gives
the market clearing price and volume by hour. Peak hours are market-specific, and are
given as: [0700-2300) on APX, [0800-2000) on EEX and [0800-2000) on PWN. For further
details, see the exchange websites www.apx.nl, www.eex.de and www.powernext.fr.

The forward price F (i) is determined on an over-the-counter (bilateral) market, on
day i− 1, also for delivery on day i. The sample periods are from 01/2001 to 08/2005,
noting that there are no forward quotations on weekends. Returns are calculated relative
to the next trading day. While exchanges give 24 hourly spot prices, set on day i − 1
for delivery on i, Platts (see www.platts.com for details) gives base, peak and off-peak
flat delivery forward prices, where peak/off-peak hours are the same on the exchanges
and the over-the-counter market. The Platts prices are a volume-weighted mean of all
over-the-counter deals for delivery on day i executed during day i − 1. There are no
geographical mismatches between the exchange and over-the-counter markets (as may
arise on American markets), nor are there any timing mismatches (since virtually all
over-the-counter deals are executed before the spot exchange closes on day i− 1).

Summary descriptive statistics for R(i) := lnS(i) − lnF (i) are given in Table 1,
where D is the number of observations (not necessarily consecutive days), E[R] and
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s.d.[R] are the estimated mean and standard deviation, and τ is the t−statistic that
E[R]= 0. Clearly, there is a very significant negative average short-term risk premium
for all markets, during peakload hours, over the sample period. We observe a positive
average short-term risk premium on EEX off-peak hours, that is significant at the 5%
level. There is no significant average risk premium during either APX or PWN off-peak
hours.

EEX APX PWN
peak off-peak peak off-peak peak off-peak

D 721 846 698 833 717 842
E[R] −0.04211 0.01325 −0.04656 0.00732 −0.02232 0.00545

s.d.[R] 0.19849 0.16361 0.21905 0.24384 0.14428 0.12141
τ −5.70 2.36 −5.62 0.87 −4.14 1.30

Table 1: Summary descriptive statistics for R(i) := lnS(i) − lnF (i), i ∈ [1, D], where
R(·) is the one-day risk premium, S(·) and F (·) the spot and forward prices respectively,
i the day (observation number), and D the total number of observations in the sample.
The sample mean (and corresponding t-statistic, τ) and sample standard deviation, are
reported for peak and off-peak hours, on the EEX, APX and PWN power markets.

Note that the slope of lnK(d) represents the instantaneous short-term (one-day)
risk premium, which can be approximated on day d by ∆ lnK(d)/∆d, which equals
lnK(d) − lnK(d − 1) = lnS(d) − lnF (d) = R(d), given ∆k := 1 − Lk, with L the lag
operator, and k = 1. Further, (1/2)[lnK(d)− lnK(d− 2)] = (1/2)[R(d) + R(d− 1)], if
k = 2, and an m−step backwards moving average of R(d) when k = m. A more accurate
approximation, which is convenient from a graphical viewpoint, is given by constructing
a univariate Nadaraya-Watson kernel regression estimator of R(i) on i (days). The
kernel estimator of R(x) at every point x is given by

R̂(x) = arg min
ψ

D∑
i=1

(R(i)− ψ)2K((x− i)/h),

where D is the number of observations in the sample, and ψ is a locally-fit constant.
The bandwidth h controls the degree of smoothing. It is fixed across the sample,
and is selected by the “rule-of-thumb” h = 0.15(max{i} − min{i}) = 0.15(D − 1).
The kernel weighting function K(u) is chosen to be the Gaussian density function
(2π)−1/2 exp(−u2/2). For an introduction to kernel techniques, see Abadir and Law-
ford (2004) and references therein. The results are plotted in Figures 7–12, and give a
clear indication of time-varying trends in the instantaneous short-term risk premia.

3 Single-Factor Market Model

Here, we introduce the concept of the risk premium in a standard theoretical model of the
spot and forward electricity market, that has been analyzed by, inter alia, Clewlow and
Strickland (1999). Define a filtered probability space (Ω, F, Ft, P ), where Ft is a (null-
set augmented) filtration generated by a one-dimensional Wiener process Wt, and P the
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physical measure. We denote by St = exp(Xt) the spot price of electricity for delivery at
time t. The time evolution of the log-spot price follows an Ornstein-Uhlenbeck process
with constant speed of reversion α, instantaneous volatility σ and time-varying mean
level βt, satisfying the stochastic differential equation (SDE)

dXt = α(βt −Xt) + σdWt, α, σ > 0.

The price of a forward contract at time t for delivery at time T ≥ t will be denoted
F (t, T ). We assume that at each time t, a forward contract with every maturity T ≥ t
can be traded. As shown by Clewlow and Strickland (1999), in the absence of arbitrage
the dynamics of the forward price F (t, T ) under the (unique) risk-neutral measure Q
equivalent to P , satisfy the SDE

dF (t, T )
F (t, T )

= σe−α(T−t)dW̃t, (3.1)

where W̃t denotes a Wiener process under Q. The risk-neutral dynamics of the wealth
Kt generated by the continuous time equivalent of the sliding MWh strategy in this
model are shown in the Appendix to follow

dKt

Kt
= σdW̃t.

As expected, the wealth process of this trading strategy is a Q-martingale. However, our
preliminary empirical observations show that under the historical probability measure
P , the wealth process Kt has a (negative) drift. So, under P we observe that

dKt

Kt
= νdt+ σdWt.

From the Cameron-Martin-Girsanov theorem, we have that dW̃t = dWt + (ν/σ)dt,
and by substituting into (3.1) we obtain the implied forward dynamics under the physical
measure:

dF (t, T )
F (t, T )

= νe−α(T−t)dt+ σe−α(T−t)dWt.

We conclude that in the simple one-factor mean-reverting market model the empiri-
cally observed drift in the sliding MWh trading strategy should imply a drift (decreasing
with time to maturity) in the forward contracts. In Section 5, we directly extend the
above argument to a more realistic market model.

3.1 Estimation

In practice, electricity markets quote forwards for delivery over a period of time (for
instance, a week, month, quarter, or year). Let F (t, T1, T2) be the price of a forward
contract quoted at time t for delivery over the period [T1, T2]. To exclude arbitrage we
must have
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F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

F (t, s)ds.

For the sake of computationally tractable estimation, we approximate the forward
price F (t, T1, T2) by assuming that the prices of the forward contracts for a single time
delivery within the period [T1, T2] are approximately equal, i.e. for s, u ∈ [T1, T2] :
F (t, s) ≈ F (t, u). Application of Itô’s lemma and rearranging then gives

dF (t, T1, T2)
F (t, T1, T2)

= c(t, T1, T2, α)(νdt+ σdWt),

c(t, T1, T2, α) =
e−α(T2−t)(1− e(T2−T1+1)α)

(T2 − T1)(1− eα)
,

where c(·) is derived by infinite series expansions of (T2 − T1)−1
∑T2
T=T1

exp(−α(T − t)),
that arises in (dF (t, T1, T2)/F (t, T1, T2))/(dKt/Kt). Directly, we obtain the following
system:

dKt

Kt
= νdt+ σdWt, (3.2)

dF (t, T1, T2)/F (t, T1, T2)
dKt/Kt

= c(t, T1, T2, α). (3.3)

The parameters ν and σ are estimated by least squares on (3.2), and α is esti-
mated by minimizing the mean squared error of the difference between the left and
right hand sides of (3.3). Note that (3.2) may be written, after use of Itô’s lemma, as
d lnKt = (ν − σ2/2)dt+ σdWt. Discretizing (with one unit of time between consecutive
observations) gives ∆ lnKt = (ν − σ2/2) + σεt, where εt is N(0,1). Estimation of ν and
σ follows by maximum likelihood (least squares). The estimation results obtained for
the German, French and Dutch markets are in Table 2. They are very similar to the
initial nonparametric analysis in Section 2 (indeed, compare Tables 1 and 2), which is
unsurprising since a one-factor model only gives enough flexibility to model the strong
short-term risk premium.

The numerical estimation of α in c(t, T1, T2, α) is constrained such that α ∈ [0, 2],
due to a flat likelihood surface for α > 2. For the EEX and APX peak products, α̂ = 2,
with corresponding half-life 0.35 days. The one-factor model illustrates the focus on the
short-term risk premium, and the main insight is that the half-lives on EEX, APX and
PWN peak products are all less than half a day. This analysis is extended through the
three-factor model below, where we did not face the same numerical problems, and the
estimation is unconstrained.

4 Principal Components Analysis

Following Clewlow and Strickland (2000), we perform a principal components analysis
on the empirical (symmetric) covariance matrix Σ of d lnF/F for each market, and for
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EEX APX PWN
peak off-peak peak off-peak peak off-peak

ν̂ −0.04211 0.01325 −0.04656 0.00732 −0.02232 0.00545
(p-value) 1.22× 10−8 0.01851 1.96× 10−8 0.38620 3.43× 10−5 0.19290

σ̂ 0.19849 0.16361 0.21905 0.24384 0.14428 0.12141
α̂ 2 0.202 2 0.278 1.59 0.164

half-life 0.35 3.43 0.35 2.49 0.44 4.23

Table 2: Estimated parameters of the one-factor model. See Section 3.1 and equations
(3.2) and (3.3) for further details. The parameters ν and σ are estimated by least squares
(the p-value follows directly), and α by nonlinear least squares. The continuous-time
half-life is calculated as (ln 2)/α, and is reported in days. Results are reported for peak
and off-peak hours, on the EEX, APX and PWN power markets.

peak and off-peak hours. Since the eigenvectors associated with distinct eigenvalues of
a normal square matrix (ΣΣ′ = Σ′Σ) are orthogonal, we may reduce the dimension
of (d lnF/F ) by sorting eigenvalues in decreasing order of magnitude, and then select-
ing only those eigenvectors which contribute “substantially” to explaining the observed
variation in d lnF/F . This gives a guide to determining the appropriate number of
risk-factors that are needed. Results on eigenvalues and eigenvectors are given in Tables
4–15, where elements of eigenvectors that exceed 0.15 in absolute value are highlighted.
Notationally, we refer to forward products as (e.g.) EEX D1P, i.e. the day-ahead EEX
peak forward. Other products are W# (week), M# (month), Q# (quarter) and Y#
(year), where # denotes a period relative to today, e.g. W1 (forward covering next
week), and Q2 (forward covering quarter after next). Peak and off-peak products are
denoted by P and OP. For EEX, APX and PWN peak hours, we see that three largest
principal components explain 95.9%, 97.3% and 96.3% of the variation respectively. For
EEX, APX and PWN off-peak hours, the values are reduced to 89.2%, 91.6%, and 87.5%.

The eigenvectors associated with the three largest principal components have a useful
interpretation. For instance, on EEX peak hours (Table 5), we see that the first principal
component corresponds to short-term effects, through the day-ahead forward. The sec-
ond and third principal components correspond to medium-term effects (week-ahead and
one-month-ahead and two-month-ahead forwards) and longer-term effects (week-ahead
up to three-year-ahead forwards), respectively. Similar results are seen for both APX
and PWN peak hours, and for off-peak hours, although the impact of the second and
third principal components at longer time horizons is then reduced. We conclude that a
three-factor model is a sensible improvement over the simple one-factor model outlined
above (at least when considering risk premia), where the three factors correspond to
short-term, medium-term, and longer-term driving forces. We develop this below.

5 Multi-Factor Market Model

We extend the simple market model of Section 3 by introducing three risk-factors
that drive the electricity spot price. Again, we start with a filtered probability space
(Ω, F, Ft, P ) but now the filtration Ft is generated by 3-dimensional Wiener process
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Wt = (W 1
t ,W

2
t ,W

3
t ). Multi-factor models have been proposed by several authors as an

appropriate set-up for energy commodities (see e.g. Culot et al. (2006), Koekebakker
and Ollmar (2005) and Schwartz and Smith (2000) for discussion). In this framework,
the spot price St = exp(βt + X1

t + X2
t + X3

t ), and under the physical measure P the
three risk factors satisfy

dXi
t = −αiXi

tdt+ σidW
i
t , i = 1, 2, 3.

The forward contracts under the risk-neutral measure follow

dF (t, T )
F (t, T )

= σ1e
−α1(T−t)dW̃ 1

t + σ2e
−α2(T−t)dW̃ 2

t + σ3e
−α3(T−t)dW̃ 3

t ,

and by the same reasoning as above, the risk-neutral sliding MWh strategy wealth pro-
cess satisfies

dKt

Kt
= σ1dW̃

1
t + σ2dW̃

2
t + σ3dW̃

3
t ,

and under the physical measure:

dKt

Kt
= (ν1 + ν2 + ν3)dt+ σ1dW

1
t + σ2dW

2
t + σ3dW

3
t .

The implied historical forward dynamics are then

dF (t, T )
F (t, T )

= (ν1e−α1(T−t) + ν2e
−α2(T−t) + ν3e

−α3(T−t))dt

+ σ1e
−α1(T−t)dW 1

t + σ2e
−α2(T−t)dW 2

t + σ3e
−α3(T−t)dW 3

t .

This formula effectively allows us to use all of the historical forward prices to estimate
the potential risk premium in the forward market at various time horizons. It is also
noteworthy that the formula does not involve the function βt appearing in the spot price
evolution equation. Hence, our estimation is robust with respect to the seasonality of
power prices, which can be rather complex and difficult to model.

5.1 Estimation

As for the simple one-factor model above, we approximate the market quoted forward
prices F (t, T1, T2) to facilitate estimation. By direct application of Itô’s lemma, we
obtain

dF (t, T1, T2)
F (t, T1, T2)

=
3∑
i=1

c(t, T1, T2, αi)(νidt+ σidW
i
t ).

The stochastic processes Y 1
t , Y

2
t , Y

3
t follow the SDE’s dY it = νidt + σidW

i
t , i = 1, 2, 3,

and we can rewrite the system to be estimated as:
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dY it = νidt+ σidW
i
t , i = 1, 2, 3, (5.1)

dKt

Kt
=

3∑
i=1

dY it , (5.2)

dF (t, T1, T2)
F (t, T1, T2)

=
3∑
i=1

c(t, T1, T2, αi)dY it . (5.3)

After discretization, the system (5.1)–(5.3) can be viewed as a state-space model with
state and observation vectors (∆Y 1

t ,∆Y
2
t ,∆Y

3
t ), (∆Kt/Kt,∆F (t, T1, T2)/F (t, T1, T2)).

In principle, this can be estimated using the Kalman filter, modified to account for miss-
ing data (since we do not observe all the forward prices on all quotation days), and cou-
pled with a parameter space search algorithm as in Cortazar et al. (2003) . Kalman filter
estimation is, however, strongly dependent on the choice of the observation error covari-
ance matrix, which in our case has very large dimension and is not easily parameterized.
In addition, the parameter space is large (parameters (α1, α2, α3, ν1, ν2, ν3, σ1, σ2, σ3)),
and it is no simple matter to find a global optimum. To overcome this problem, we de-
sign a two-step least squares estimation procedure in the spirit of the one-factor model
estimation.

Step 1. Find dY it and αi that minimize (where α1 < α2 < α3)

∑
t

{(
dKt

Kt
−

3∑
i=1

dY it

)2

+
∑

[T1,T2]

(
dF (t, T1, T2)
F (t, T1, T2)

−
3∑
i=1

c(t, T1, T2, αi)dY it

)2}
.

Step 2. Given dY it from Step 1, obtain least squares estimates of νi and σi.

Intuitively, the method first finds (α1, α2, α3) and corresponding (∆Y 1
t ,∆Y

2
t ,∆Y

3
t )

to minimize the model pricing error, and then estimates (ν1, ν2, ν3, σ1, σ2, σ3) as the
mean and standard deviation of (∆Y 1

t ,∆Y
2
t ,∆Y

3
t ). In the Appendix, we demonstrate

that this estimator is in fact equivalent to the Kalman filter. Parameter estimates for
each of the markets are listed in Table 3.

Of particular note, we see that the half-lives associated with the short-term factor
(peak products) are all roughly half a day (and α < 2), and so the one-factor model
overstates the short-term rate of reversion (see the discussion in Section 3.1).

5.2 Term-structure and temporal dynamics of risk premia

Using the estimation results from Table 3, we can visualize the term-structure of the risk
premia; that is, the dependence of the instantaneous drift in the forward prices on the
time to maturity. Figures 13–18 plot these for the three markets under study. The results
obtained are in very good agreement with the theoretical model of Bessembinder and
Lemmon (2002), who predict negative risk premia caused by the presence of skewness in
the spot price distribution, and positive risk premia due to the level of volatility in the
spot price. As the time to maturity decreases, so does the long-term and medium-term
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EEX APX PWN
Long peak off-peak peak off-peak peak off-peak
ν̂ 0.00115 0.00093 −0.00068 4.96× 10−5 0.00071 0.00133

(p-value) 0.05702 0.08980 0.60414 0.98622 0.34245 0.32479
σ̂ 0.01702 0.01285 0.03379 0.07489 0.01967 0.03519
α̂ 0.005 0.00001 0.01 0.005 0.002 0.005

half-life 138.63 69314.72 69.31 138.63 346.57 138.63
Medium peak off-peak peak off-peak peak off-peak

ν̂ 0.00079 −0.00309 0.06126 0.02036 0.00229 −0.00115
(p-value) 0.90052 0.73460 0.11878 0.86526 0.60256 0.92568

σ̂ 0.17721 0.21353 1.01947 3.13130 0.11403 0.32171
α̂ 0.1 0.15 0.5 0.25 0.1 0.15

half-life 6.93 4.62 1.39 2.77 6.93 4.62
Short peak off-peak peak off-peak peak off-peak
ν̂ −0.02257 0.02948 −0.08119 −0.13910 −0.01429 0.01392

(p-value) 0.01785 0.00240 0.04543 0.35910 0.03374 0.28698
σ̂ 0.26831 0.22699 1.05358 3.95803 0.17472 0.3412
α̂ 1.5 1.3 1.2 1.7 1.4 1.7

half-life 0.46 0.53 0.58 0.41 0.50 0.41

Table 3: Estimated parameters of the three-factor model. See Section 5.1 and equa-
tions (5.1)-(5.3) for further details. The parameters α(i) are estimated through Step
1 (Section 5.1), jointly with dY it , the unobserved factors, for i = 1, 2, 3. The α’s are
then sorted by increasing magnitude, to give the “long-term” (small α), medium-term
and short-term (large α) risk factors. Parameters ν and σ corresponding to each of the
risk factors are then unambiguously estimated using least squares, through Step 2 (Sec-
tion 5.1), and the p-value follows directly. The continuous-time half-life is calculated as
(ln 2)/α, and is reported in days. Results are reported for peak and off-peak hours, on
the EEX, APX and PWN power markets.

risk-factor uncertainty and the corresponding positive risk premium, thereby causing an
downward drift in forwards. The price skewness premium caused by unexpected price
spikes, and represented by the short-term risk-factor in our model, remains present in
the peak prices until just before delivery and then quickly disappears, hence the positive
drift. It is not present in the off-peak prices as those are not prone to spikes (the only
exception may be the Dutch market, where we see evidence of a negative risk premium,
even in the short-term off-peak prices – this may either be a spurious result, or can be
explained by relatively high skewness of APX off-peak spot prices).

As suggested by Figures 7–12, the instantaneous risk premia seem to evolve over
time in all three markets. In particular, and as to be expected, they are smaller as
markets become more mature and attract more speculators. We also observe that the
risk premium exhibits similar behaviour across the markets. It would be interesting
to extend our term-structure analysis to a non-constant risk premium setting, and to
further compare risk premia across continental markets. We leave this for future work.
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6 Conclusions

In this paper, we have investigated the presence and structure of risk premia in forward
prices on three major continental European markets – German, French and Dutch.
We confirm previous nonparametric results obtained in the literature on the American
PJM, and UK markets, and show that the short-term forward prices are not simply the
expectation of the spot prices. We further link the presence of a risk premium with the
properties of the forward price dynamics at all time-horizons, and use it to extend the
risk premium analysis beyond the very short-term. Taking into account all the available
historical data, we discover the presence of significant risk premia in the long-term as
well as the short-term. We infer the shape of the risk premium term-structure, i.e.
the dependence of the risk premium on time to maturity of the forward contract. We
find that the term-structure is in agreement with the theoretical model of the electricity
market developed by Bessembinder and Lemmon (2002). It reflects the changing balance
of two forces that determine the risk premium, namely the sensitivity to skewness of the
spot price, and the variability of the spot price. As the time to maturity increases, the
influence of skewness becomes relatively less important compared to the variability, and
so the risk premium decreases.
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Figure 1: Logarithmic wealth process (lnK)
against observation number: EEX peak

Figure 2: Logarithmic wealth process (lnK)
against observation number: EEX off-peak

Figure 3: Logarithmic wealth process (lnK)
against observation number: APX peak

Figure 4: Logarithmic wealth process (lnK)
against observation number: APX off-peak

Figure 5: Logarithmic wealth process (lnK)
against observation number: PWN peak

Figure 6: Logarithmic wealth process (lnK)
against observation number: PWN off-peak

12 Studies in Nonlinear Dynamics & Econometrics Vol. 10 [2006], No. 3, Article 7

http://www.bepress.com/snde/vol10/iss3/art7



Figure 7: Kernel-fit instantaneous risk
premium R̂(·) (×100 gives %): EEX peak

Figure 8: Kernel-fit instantaneous risk
premium R̂(·) (×100 gives %): EEX off-peak

Figure 9: Kernel-fit instantaneous risk
premium R̂(·) (×100 gives %): APX peak

Figure 10: Kernel-fit instantaneous risk
premium R̂(·) (×100 gives %): APX off-peak

Figure 11: Kernel-fit instantaneous risk
premium R̂(·) (×100 gives %): PWN peak

Figure 12: Kernel-fit instantaneous risk
premium R̂(·) (×100 gives %): PWN off-peak
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Figure 13: Risk premium term-structure
(%/day) (time-to-mat. days): EEX peak

Figure 14: Risk premium term-structure
(%/day) (time-to-mat. days): EEX off-peak

Figure 15: Risk premium term-structure
(%/day) (time-to-mat. days): APX peak

Figure 16: Risk premium term-structure
(%/day) (time-to-mat. days): APX off-peak

Figure 17: Risk premium term-structure
(%/day) (time-to-mat. days): PWN peak

Figure 18: Risk premium term-structure
(%/day) (time-to-mat. days): PWN off-peak
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EEX peak

Component Eigenvalue Variance prop. Cumulative prop.
Comp 1 0.028918 0.806624 0.806624
Comp 2 0.004474 0.124803 0.931427
Comp 3 0.000979 0.02732 0.958747
Comp 4 0.000655 0.018279 0.977026
Comp 5 0.000244 0.006817 0.983843
Comp 6 0.000123 0.00343 0.987273
Comp 7 0.0000992 0.002768 0.990041
Comp 8 0.0000778 0.002171 0.992213
Comp 9 0.0000669 0.001866 0.994079
Comp 10 0.0000578 0.001611 0.99569
Comp 11 0.0000541 0.001508 0.997198
Comp 12 0.0000302 0.000844 0.998042
Comp 13 0.0000278 0.000775 0.998817
Comp 14 0.0000218 0.000608 0.999425
Comp 15 0.0000206 0.000575 1

Table 4: Summary of principal components analysis: Eigenvalues and proportion (cu-
mulative) of variation explained by each component (latter ×100 gives %), EEX peak

Variable Vector 1 Vector 2 Vector 3
EEX D1P 0.991675 0.126394 −0.014239
EEX W1P 0.126809 −0.937227 0.187542
EEX M1P 0.020925 −0.25609 −0.368589
EEX M2P 0.005448 −0.154066 −0.333433
EEX M3P 0.002623 −0.078789 −0.270971
EEX M4P 0.000761 −0.006772 −0.287515
EEX M5P −0.00296 −0.011587 −0.2266
EEX M6P 0.00069 −0.009759 −0.189085
EEX Q1P 0.0022 −0.062955 −0.354689
EEX Q2P −0.000912 0.00522 −0.239806
EEX Q3P −0.000996 −0.045609 −0.091033
EEX Q4P −0.001788 −0.036149 −0.105014
EEX Y1P 0.000929 0.015394 −0.232396
EEX Y2P −0.002161 0.028415 −0.191589
EEX Y3P −0.000804 0.037517 −0.425509

Table 5: Summary of principal components analysis: Eigenvectors corresponding to the
three largest eigenvalues (products explained in Section 4), EEX peak
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EEX off-peak

Component Eigenvalue Variance prop. Cumulative prop.
Comp 1 0.019391 0.687414 0.687414
Comp 2 0.003903 0.138377 0.825792
Comp 3 0.001868 0.06622 0.892012
Comp 4 0.000697 0.024717 0.916728
Comp 5 0.000421 0.014909 0.931637
Comp 6 0.000386 0.013695 0.945332
Comp 7 0.000304 0.010762 0.956094
Comp 8 0.000271 0.009612 0.965706
Comp 9 0.000237 0.008397 0.974103
Comp 10 0.000176 0.006232 0.980335
Comp 11 0.000143 0.005058 0.985393
Comp 12 0.000121 0.004306 0.989699
Comp 13 0.000108 0.003841 0.99354
Comp 14 0.000105 0.003724 0.997264
Comp 15 0.0000772 0.002736 1

Table 6: Summary of principal components analysis: Eigenvalues and proportion (cu-
mulative) of variation explained by each component (latter ×100 gives %), EEX off-peak

Variable Vector 1 Vector 2 Vector 3
EEX D1OP 0.995054 −0.089808 −0.03918
EEX W1OP 0.094304 0.965934 0.181016
EEX M1OP 0.015469 0.06809 0.262071
EEX M2OP 0.017821 −0.020692 0.366053
EEX M3OP 0.009045 −0.065764 0.316446
EEX M4OP 0.004256 −0.103131 0.303805
EEX M5OP −0.002925 −0.038423 0.204193
EEX M6OP −0.001416 −0.053985 0.168283
EEX Q1OP 0.00344 −0.093916 0.417884
EEX Q2OP −0.00329 −0.045614 0.238909
EEX Q3OP 0.003313 0.016259 0.115969
EEX Q4OP 0.011723 −0.007383 0.201498
EEX Y1OP 0.003141 −0.110891 0.306071
EEX Y2OP 0.002942 −0.074536 0.200298
EEX Y3OP 0.010787 −0.073603 0.284638

Table 7: Summary of principal components analysis: Eigenvectors corresponding to the
three largest eigenvalues (products explained in Section 4), EEX off-peak

16 Studies in Nonlinear Dynamics & Econometrics Vol. 10 [2006], No. 3, Article 7

http://www.bepress.com/snde/vol10/iss3/art7



APX peak

Component Eigenvalue Variance prop. Cumulative prop.
Comp 1 0.045176 0.782812 0.782812
Comp 2 0.009612 0.166558 0.94937
Comp 3 0.00139 0.024092 0.973462
Comp 4 0.000596 0.010326 0.983788
Comp 5 0.000359 0.006222 0.99001
Comp 6 0.000198 0.003426 0.993437
Comp 7 0.000143 0.002486 0.995923
Comp 8 0.000129 0.002244 0.998167
Comp 9 0.0000643 0.001114 0.999281
Comp 10 0.0000415 0.000719 1

Table 8: Summary of principal components analysis: Eigenvalues and proportion (cu-
mulative) of variation explained by each component (latter ×100 gives %), APX peak

Variable Vector 1 Vector 2 Vector 3
APX D1P −0.995422 −0.094211 −0.000321
APX W1P −0.093404 0.985785 0.139115
APX M1P −0.008911 0.11254 −0.780492
APX M2P −0.001495 0.065061 −0.50361
APX Q1P −0.006029 0.037752 −0.25663
APX Q2P −0.009766 0.01901 −0.161852
APX Q3P −0.012391 0.012024 −0.11023
APX Q4P −0.006009 0.008375 −0.078122
APX Y1P 0.001691 0.018686 −0.067913
APX Y2P −0.002178 0.010199 −0.054176

Table 9: Summary of principal components analysis: Eigenvectors corresponding to the
three largest eigenvalues (products explained in Section 4), APX peak
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APX off-peak

Component Eigenvalue Variance prop. Cumulative prop.
Comp 1 0.064229 0.506172 0.506172
Comp 2 0.044631 0.351728 0.8579
Comp 3 0.007344 0.057874 0.915774
Comp 4 0.004438 0.034973 0.950747
Comp 5 0.001817 0.01432 0.965067
Comp 6 0.001415 0.011149 0.976215
Comp 7 0.001101 0.008673 0.984888
Comp 8 0.000876 0.006904 0.991792
Comp 9 0.000719 0.005662 0.997454
Comp 10 0.000323 0.002546 1

Table 10: Summary of principal components analysis: Eigenvalues and proportion (cu-
mulative) of variation explained by each component (latter ×100 gives %), APX off-peak

Variable Vector 1 Vector 2 Vector 3
APX D1OP −0.970464 −0.238448 0.027776
APX W1OP −0.23858 0.9696 −0.011324
APX M1OP −0.028456 −0.017072 −0.975946
APX M2OP 0.016435 −0.004221 −0.211689
APX Q1OP 0.002488 −0.005064 −0.031079
APX Q2OP −0.01105 0.016967 −0.006574
APX Q3OP 0.001478 0.007865 −0.018573
APX Q4OP 0.002619 0.005862 −0.01399
APX Y1OP 0.007075 −0.047706 −0.003176
APX Y2OP −0.003301 −0.004917 −0.016072

Table 11: Summary of principal components analysis: Eigenvectors corresponding to
the three largest eigenvalues (products explained in Section 4), APX off-peak
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PWN peak

Component Eigenvalue Variance prop. Cumulative prop.
Comp 1 0.019741 0.731021 0.731021
Comp 2 0.005354 0.198251 0.929272
Comp 3 0.00091 0.03371 0.962982
Comp 4 0.000404 0.014959 0.977941
Comp 5 0.000259 0.009577 0.987518
Comp 6 0.000189 0.007007 0.994526
Comp 7 0.000148 0.005474 1

Table 12: Summary of principal components analysis: Eigenvalues and proportion (cu-
mulative) of variation explained by each component (latter ×100 gives %), PWN peak

Variable Vector 1 Vector 2 Vector 3
PWN D1P −0.99371 −0.106958 0.030252
PWN W1P −0.091029 0.94107 0.308796
PWN M1P −0.054421 0.264436 −0.576325
PWN M2P −0.022684 0.142541 −0.505413
PWN Q1P −0.023795 0.10449 −0.522919
PWN Q2P −0.010231 0.041393 −0.179128
PWN Y1P −0.010353 0.008408 −0.102983

Table 13: Summary of principal components analysis: Eigenvectors corresponding to
the three largest eigenvalues (products explained in Section 4), PWN peak
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PWN off-peak

Component Eigenvalue Variance prop. Cumulative prop.
Comp 1 0.016681 0.556604 0.556604
Comp 2 0.007961 0.265644 0.822248
Comp 3 0.001567 0.052291 0.874539
Comp 4 0.001323 0.044151 0.91869
Comp 5 0.001092 0.036435 0.955126
Comp 6 0.000784 0.026149 0.981274
Comp 7 0.000561 0.018726 1

Table 14: Summary of principal components analysis: Eigenvalues and proportion (cu-
mulative) of variation explained by each component (latter×100 gives %), PWN off-peak

Variable Vector 1 Vector 2 Vector 3
PWN D1OP −0.995653 −0.08988 −0.010718
PWN W1OP −0.08926 0.993245 −0.008249
PWN M1OP −0.007825 0.067204 0.389266
PWN M2OP 0.006119 −0.026976 0.716039
PWN Q1OP −0.02271 0.00765 0.44968
PWN Q2OP −0.009645 −0.002484 0.234895
PWN Y1OP −0.000947 −0.008835 0.279623

Table 15: Summary of principal components analysis: Eigenvectors corresponding to
the three largest eigenvalues (products explained in Section 4), PWN off-peak

20 Studies in Nonlinear Dynamics & Econometrics Vol. 10 [2006], No. 3, Article 7

http://www.bepress.com/snde/vol10/iss3/art7



A Appendix: Technical Derivations

Definition 1. Let K(n, t) be the wealth at time t of a trading strategy in which we
start with unit wealth, and for each i = 1, . . . , n, we invest all the wealth at time i−1

n t

to buy the electricity futures contract maturing at time i
n t, and hold that contract until

maturity. We define Kt (the wealth of the sliding MWh trading strategy) to be

Kt = lim
n→∞

K(n, t).

Proposition 2. The wealth of the sliding MWh trading strategy in the one-factor market
model (see Section 3) satisfies the following SDE:

dKt

Kt
= σdW̃t.

Proof. Let us fix a time t. It is easy to see that

K(n, t)
K(n, 0)

=
n∏
i=1

F ( in t,
i
n t)

F ( i−1
n t, in t)

,

and taking logarithms on both sides:

lnK(n, t)− lnK(n, 0) =
n∑
i=1

[
lnF

(
i

n
t,
i

n
t

)
− lnF

(
i− 1
n

t,
i

n
t

)]
. (A.1)

By direct application of Itô’s lemma, we obtain

lnF
(
i

n
t,
i

n
t

)
− lnF

(
i− 1
n

t,
i

n
t

)
= −σ

2

4α

(
1− e−2αt/n

)
+ σ

∫ i
n t

i−1
n t

e−α(it/n−s)dW̃s.

Substituting into (A.1) and rearranging gives

lnK(n, t)− lnK(n, 0) = −σ
2

4α
n
(
1− e−2αt/n

)
+ σ

∫ t

0

h(n, s)dW̃s, (A.2)

where for s ∈ [ i−1
n t, in t], h(n, s) = e−αit/n−s, with i = 1, . . . , n. It is clear that

lim
n→∞

n(1− e−2αt/n) = 2αt. (A.3)

Since limn→∞
∫ t
0
|h(n, s)−1|ds = 0, we have by elementary properties of the Itô integral

(see for example Karatzas and Shreve (1997)) that

lim
n→∞

∫ t

0

h(n, s)dW̃s = W̃t. (A.4)

Taking the limit in (A.2), and substituting from (A.3) and (A.4), we get
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lnKt − lnK0 = −σ
2

2
t+ σW̃t.

Rewriting this in differential form, and further application of Itô’s lemma completes the
proof.

Corollary 3. In the three-factor market model, the wealth of the sliding MWh strategy
satisfies

dKt

Kt
=

3∑
i=1

σidW̃
i
t .

The proof is straightforward, and closely follows that above.

Proposition 4. Given a series of observations {Zt}rt=1, Zt ∈ Rm and matrices {Ht}rt=1,
Ht ∈ Rm×n, denote:

X∗
t = argmin

Xt∈Rn

r∑
t=1

(Zt −HtXt)2, ξ∗t = Zt −HtX
∗
t , R∗ = cov(ξ∗t ), Q∗ = cov(X∗

t ).

Now consider a state-space model of the form:

Zt = HtXt + ξt, Xt = d+ εt,

where X, d ∈ Rn, εt ∼ i.i.d.N(0, Q∗), and ξt ∼ i.i.d.N(0, R∗). Further, denote by {X̂t}rt=1

the Kalman filter estimator of the state sequence {Xt}rt=1 given the observation sequence
{Zt}rt=1. Then,

X∗
t = X̂t; t = 1, . . . , r.

Proof. The equivalence follows from the following set of equations:

X̂t = E[Xt|Z1, . . . , Zt]
= E[Xt|Zt]
= cov(Xt, Zt)var(Zt)−1Zt

= cov(X∗
t , Zt)var(Zt)−1Zt

= cov((H ′
tHt)−1H ′

tZt, Zt)var(Zt)−1Zt

= (H ′
tHt)−1H ′

tvar(Zt)var(Zt)−1Zt
= X∗

t ,

where the second equality follows from the independence structure of the state-space
model, the third is a standard result from multivariate regression theory, the fourth is
implied by the choice of matrices Q∗ and R∗, and the fifth and the last by the fact that
X∗
t is a least-squares estimator.
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